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The distinctive featr-es of the phase space of a multidimensional d namic 
x 

system with col- 
lision interactions a : investigated under the usual idealizations. e existence of certain 
configurations of the phase space is established. Motions near these configurations (called 
“slippa e” motions) constitute convergent infinite sequences of collision-collisionless do- 
mains. &l e relationship between the states of the system at the beginning and end of slip- 
page can be obtained by introducing a new dynamic model of systems with dynamic interac- 
tions. This model permits absolutely inelastic collisions to occur in the above configura- 
tions followed by the motion of the masses involved in the collisions under a kinematic con- 
straint; collisions occurring outside these configurations cannot be completely inelastic 
and have a velocity restitution coefficient different from zero. 

This model of slippage is a generalization of the idealization of collision interactions 
proposed in [l] on the basis of an experimental study of interactions in a chronometer. This 
idealization takes account of two collisions: the not completely elastic first collision and 
the second inelastic collision with subsequent motion under a kinematic constraint. 

This “improved” dynamic model of systems with collision interactions made possible 
the investigation of complex periodic and nonperiodic modes of operation through analog 
and digital computer simulation [2 and 31. 

1. Let the collisionless motions of the two masses of a system between which collision 
interactions can occur be described in dimensionless form by Eqs. 

Xl” = FI (X1, Xl’, . ., xn’, t) + Fla (Y, ~‘1, p”z” = Fz (a Xl’, . . . , X,‘, t) - F1a (Y, !/‘I 

7J = x2 - X] > 0 (1.1) 

Here z are the phase coordinates of the system and x1 and x2 denote the displacements 
of the colliding masses; F,, is the interaction force between the masses in the time inter 
vals between collisions: F, and F, include all of the remaining forces acting on the above 
masses; /J is the ratio of the masses. 

The relative mass displacement y = xx - z t is given in accordance with (1.1) by Eq. 

IW” = F, - P, - (1 + WI, (1.2) 
The collision occurs on the surface II, y = 0, and is idealized as an instantaneous chan- 

ge in the velocities y l , x1 ’ in accordance with the known relations 

y'+ = - By'-, xl’+ z q’- + P (1 + 12) 
1 +p y’- (1.3) 

where y’-, z,‘- and y’+, ZI’+ represent the precollision and postcollision velocities and R 
is the velocity restitution coefficient for the collision (04 R < 1). 

Let us investigate the behavior of the phase trajectories in the neighborhood of the col- 
lision interaction surface n. This surface can be broken down into two parts: n 

1 
(y = 0, 

y ‘> 0) on which the tra’ectories of the collisionless motions which enter the ha f-space C 
(y > 0) originate, and ri J (y = 0, y’< 0) on which the collision interaction trajectories be- 
gin. The behavior of the trajectories in the neighborhood of the boundary of the half-surfa- 
cesflr and&(y=O,y’= 0) is determined by the sign of the second derivative y-of the 
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relative mass displacement and by the quantity 
R which determines whether the collision is in- 
elastic or partially elastic. Fig. 1 shows the 
four possible trajectories, 

y”>O, R =O, g” > 0, R > 0, 

y” < 0, R = 0, gi”<o, H >o 

In the first two cases the phase point leaves 
the boundary Y = 5, Y *= 0 and enters the half- 
space G. 

In the third case (Y”< 0, R & 0) the collision 
results in adhesion of the masses, after which 

Fig. 1 they move under a kinematic constraint for a fi- 
nite time interval. This fact requires us to sup- 

plement the definition of dynamic system (1.1) by the addition of a certain force Q which 
represents the interaction between the kinematically constrained surfaces. During the above 
motion Q varies in such a way that the condition xt m zz is fulfilled. Hence, the Eqs. of 
motion of the masses can be written as 

z,” = F,+ Ft,+ Q, pz*“=iF,-PI,--QQ, 21 S 5$’ Q < 0 

or, sfter eliminating Q, as 

V + IL) 21’ = F, + F,, Y = 5, F, - PI - (1 + /M,, < 5 (1.4) 
In ths fonrth caee (y”< 5, R > 5) the phase point generally cannot fail on the boundary 

Y”5,Y ‘= 5. However, it is precisely this case which is of the greatest interest. 

2. Let na ahow that there exists some neighborhood of the boundary Y = 0, y ‘= 0, Y”< 0 
which haa the following property: when the phase trajectory enters this nei~borhood, sub- 

sequent motion is accompanied by an infinite 
sequence of collision interactions and brings 
the phase point ever closer to the state 

y =o, y' = 0, y" 2 0, y‘">O 

from which it leaves the indicated neighbor- 
hood (Fig. 2) and enters the half-space G. We 
shall call such motion “slippage” and the 
corresponding portion n of the collision in- 
teraction surface the “s tppege plate”. I* 

At the izptsnt t let the phase point M 
enter some domain ai 2 of the surface Y = 8 
bounded bv the conditions 

Fig. 2 
!jR -- .I 

0 < Y, < y”’ (t) < Y, 
I’, 

I”H <y (2.1) 

ZYt, 
O< 

- u’ ft) 3(1-R) 
0 < - Y” (0 < 3 _ jfq 1 ---=--T<~Rij Iv (t)l (2.2) , 

We asstnne that ths l olotion y Ita + t) of Eq. (1.2) characterizing the collisionlees mo- 
tiort h8s properties sufficient to permit its representation as a Taylor series for t < t*. 

lb arrival of the trajectory at the point M, is accompanied b a collision (1.3) which is 
followed hy the nmnal portion of the motion in the half-space G. ts duration is defined as T 
the positive root ‘rl of Eq. y (:,, + t) = 5 which for t < k can be written 8s 

i [- Ry’ (to) + ‘/#y” (to) + ‘/,tay”’ (to + et)] = 0 ((‘<5 < 1) (2.3) 

Since the smallest positive root of (2.3) increases with an increasing derivative Y “’ ( to 
+ 6L), and dnce restrictions (2.1) and the second restriction of (2.2) apply, it follows thst 

(2.4) 

The relstivs velocity and acceleration at the point Y1 immediately before the next cof- 
li8ion are 

Yl’ = 1’ (to f 71) = - RYo’ -I- Wo” + '/rmi" (to f &tl) (2.5) 

y1” = y” (20 + r1) = yd’ + 71y”’ (to + @p-l) (0<01, 02-q 1) 
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From (2.6) it follows that yt”> yu”, so that the relative acceleration has approached 

zero. Let us show, however, that the point M, also belongs to the slippage plate, i.e. that 
yt”andyt’/(yt”)* satisfy inequalities (2.2). 

a) The validity of - y 1” > 0 follows from (2.6), (2.1), and (2.4), 

- !/I” > - l’o” - TlY > - I/ty0..(JG+5K-- I)>0 (2.7) 

b) The restriction imposed by inequality (2.2) on the largest value of - yl”is fulfilled 
by virtue of (2.6), since - yt” < - yo’Z 

c) The validity of - yt ‘> 0 follows from (2.5), (2.1). (2.7)) and (2.3), 

- Yl’ > (&/II’ - ‘/ZTl?/O”) + 1/2z*.(-- yo” - z,Y) > Rf/o’ - ‘/Z~lYo” > 0 
d) It remains for us now to verify fulfillment of the condition 

-- 
(y;+ < 

5(1-R) (2.8) 
24KY 

In accordance with (2.6), (2.1), and (2.3) we have (2.9) 

- Rq + P - 11z~2Y, 3P + P2 (Y - 3Y*) -- 
&Z < (I-pY)” < 6 (I- pY)2 C 

9’-&, p__$) 

Let us replace condition (2.8) which we are in the process of verifying by a stricter con- 
dition in accordance with (2.9). We arrive at the inequality 

-2pY] +prYr(+ + 5+),o (2.10) 

This inequality is fulfilled since the expression in parentheses in the second term is 
positive by virtue of (2.1), while the expression in brackets is positive by (2.4). 

-._ 
2pY<3- v4+5R 

Thus! on entering the configuration fly, the fh ase point finds itself in the slippage state 
whence rt emerges only on reaching the edge’ of the slippage plate where y = y ‘= y”= 0. 

As we see from the above analysis, the conditions (2.1) and (2.2) adopted in proving the 
existence of the slippage plate do not define exactly the boundaries of this plate. It can be 
readily shown, however, that such a boundary does, in fact, exist. This is because the 
small neighborhood y = y l = y”= 0, y “‘> 0 contains not only the points where slippage be- 
gins, but also the points where trajectories leaving this domain originate. This is precisely 
the property shared by the set of points y ‘< 0, y”= 0. Eq. (2.3) has no positive roots in 
this case regardless of how small 1 y ‘1 might be. 

3. As the time intervals ~1 between collisions diminish, the slippage phase trajectory 
approaches the trajectory of the masses moving under the kinematic constraint y = y ‘= 0. 
The required condition for slippage y”< 0, or, by (1.2), 

Fz - PI - (1 i- j@,, < 0 (3.1) 

will differ less and less from the similarly written condition of mass motion under kinematic 
constraint (1.4). We note that if the forces Ft, F, and F, 
conditions (3.1) computed for slippage and motion under d 

are functions of time alone, then 
e kinematic constraint coincide 

completely. 
These considerations enable us to recommend the following idealized dynamic model of 

systems with collision interactions for describing slippage: the slippage configurations in 
the phase spaces of the above systems admit of inelastic collisions followed by motion of 
the masses involved in the collision under a kinematic constraint; outside these confignra- 
tions there occur only partially elastic collisions with a velocity restitution coefficient dif- 
ferent from zero. 

The size of n2 depends on R and diminishes as R + 1. In accordance with (2.1) and (2.2) 
estimation of the size of nz requires knowledge of the time interval of y “‘(t) variation and 
the convergence radius r* . In the study of uncomplicated systems with a three-dimensional 
phase space this presents no difficulties, since a single trajectory emerges from the edge 
of the plate and since r* is sufficiently large. The stud of complex systema, on the other 
hand, requires a computer which enables one to “catchPr the point of origin of the slippage 
on the basis of sufficient closeness of its trajectory to the trajectory of motion under a 
kinematic constraint. 

The above analysis was carried out for systems with a single collision pair. The phase 
spaces of systems with several collision pairs contain a slippage plate for each pair. 
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4. As an example, let us 
y *, 7 for a two-mass system 
are described by Eqs. [4] 

MI. Feigin 

determine the size of the slippage plate in the phase space y, 
with two collision pairs for which the collisionless motions 

y” = - sin z, 1 y 1 < d (4.1) 

From Eq. (4.1) it follows that at the end points of the slippage trajectory segments 
(where y = T d, y ‘= 0, y”= 0) the value of y “*I - COST is extremal and equal to + 1 on 
the collision interaction surface y = - d and to y “*= - 1 on the surface y = + d. In this 
case conditions (2.1) and (2.2) become 

W-5 
+ cos ‘c > 0, Tcosz> 12R ) 7 sin Z < 0 

5 (1 - RI sin2 z 
O<FYy’< 24R 

(4.2) 

The minus sign refers to the surface y = - d and the plus sign to the surface y =+ d. 
For R = 0.5, for example, inequalities (4.2) yield the conditions 

r co9 z > 0, T sin x < 0, 0 < ‘fy’ < 0,21 sin% 

The author is grateful to N.N. Bautin for his comments on the present paper. 
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